Catalytic Performance and Characterization of Pt-Co/Al₂O₃ Catalysts for CO₂ Reforming of CH₄ to Synthesis Gas

HUANG, Chuan-Jing^{a,b}(黄传敬) ZHENG, Xiao-Ming^{*,a}(郑小明) MO, Liu-Ye^a(莫流业) FEI, Jin-Hua^a(费金华)

Pt-Co/Al₂O₃ catalyst has been studied for CO₂ reforming of CH4 to synthesis gas. It was found that the catalytic performance of the catalyst was sensitive to calcination temperature. When Co/Al₂O₃ was calcined at 1473 K prior to adding a small amount of Pt to it, the resulting bimetallic catalyst showed high activity, optimal stability and excellent resistance to carbon deposition, which was more effective to the reaction than Co/Al₂O₃ and Pt/Al₂O₃ catalysts. At lower metal loading, catalyst activity decreased in the following order: Pt-Co/ $Al_2O_3 > Pt/Al_2O_3 \gg Co/Al_2O_3$. With 9% Co, the Co/Al₂O₃ calcined at 923 K was also active for CO₂ reforming of CH₄, however, its carbon formation was much more fast than that of the Pt-Co/Al₂O₃ catalyst. The XRD results indicated that Pt species well dispersed over the bimetallic catalyst. Its high dispersion was related to the presence of CoAl₂O₄, formed during calcining of Co/Al₂O₃ at high temperature before Pt addition. Promoted by Pt, CoAl2O4 in the catalyst could be reduced partially even at 923 K, the temperature of pre-reduction for the reaction, confirmed by TPR. Based on these results, it was considered that the zerovalent platinum with high dispersion over the catalyst surface and the zerovalent cobalt resulting from CoAl2O4 reduction are responsible for high activity of the Pt-Co/Al2O3 catalyst, and the remain CoAl2O4 is beneficial to suppression of carbon deposition over the catalyst.

Keywords Synthesis gas, Pt-Co/Al₂O₃ catalyst, activity, carbon deposition

Introduction

The catalytic reforming of CH₄ with CO₂, rather

than H_2O , for the production of synthesis gas is attractive industrially because it yields low H_2/CO product ratios which are preferable as feeds for Fischer-Tropsch synthesis reaction. This reaction has also important environmental implications because both CH_4 and CO_2 are regarded as the main factors leading to the green house effect. Furthermore, this process exhibits certain potential to be used as thermochemical heat-pipe for recovery, storage and transmission of solar and other renewable energy sources. One of the major problems encountered in the application of this process is catalyst deactivation, mainly by carbon deposition via the Boudouard reaction and/or CH_4 cracking, which are favorable under reaction conditions.

During the past decades, the process of CO₂ reforming of CH₄ has received considerable attention, and efforts have focused on development of catalysts which show high activity towards synthesis gas formation, and are also resistant to carbon deposition, thus displaying stable long-term operation. Numerous nickel-based catalysts^{1,6,7-10} and supported noble metal catalysts^{4,5,11-18} have been tested for this process. However, there have been relatively few investigations of CO₂-CH₄ reforming over cobalt-based catalysts, and, especially, the uses of supported noble metal-cobalt bimetal as catalysts for the process have scarcely been reported.

In this paper, catalytic performance of Pt-Co/Al₂O₃ catalyst was examined for the reaction and a preliminary characterization for the catalyst was also per-

^a Institute of Catalysis, Zhejiang University (Xixi campus), Hangzhou, Zhenjiang 310028, China

^b Department of Chemistry, Huaibei Coal Teachers College, Huaibei, Anhui 235000, China

^{*} Received August 17, 2000; revised November 30, 2000; accepted December 25, 2000.

Project supported by the Natural Science Foundation of Zhejiang Province (ZD9903) and the Anhui Provincial Key Project for Science Research of China (No. 00021088).

formed by X-ray diffraction (XRD) and temperature-programmed reduction (TPR) techniques. From this work, some interesting results have been obtained.

Experimental

Catalyst preparation

Co/Al₂O₃ catalysts were prepared by the wet-impregnation method, using nitrate salt as the metal precursor and γ -Al₂O₃ ($S_{\rm BET}=220~{\rm m}^2/{\rm g}$), sieved to a 20/40-mesh fraction, as the support. After dried at 393 K, the resulting material was then calcined in air at 923 K or 1473 K for 5 h. Pt-Co/Al₂O₃ catalysts were prepared by impregnating Co/Al₂O₃ with a solution of H₂PtCl₆ and calcining at 923 K for 5 h. The above catalysts were denoted as xPtyCoT in which x (or y) and T refer to the metal loading in mass percentage and calcining temperature of Co/Al₂O₃, respectively. For reference, Pt/Al₂O₃ catalysts were also prepared according to the procedure for Pt-Co/Al₂O₃ catalysts, but the carrier (γ -Al₂O₃) was calcined at 1473 K for 5 h before used.

Catalytic reaction

The catalytic reaction was carried out in a fixed bed flow reactor made of quartz tube (4 mm i.d.) under atmospheric pressure. Prior to reaction, the catalyst was reduced at 923 K in H_2 for 1 h (unless otherwise stated), followed by Ar purge and heating under Ar flow to the reaction temperature (973 K). A $CH_4 + CO_2$ ($nCH_4/nCO_2 = 1.07$) gas mixture, with a $GHSV = 4100 \ h^{-1}$, was used as feed gas. After condensed and dried, the reaction effluents were analyzed using the TC detector of a gas chromatography equipped with a TDX-01 column. The amount of carbon deposition on catalyst was measured by temperature programmed oxidation (TPO). ¹⁹

Catalyst characterization

Surface area of the support as well as the catalysts were determined by N_2 adsorption at 77 K using the BET method in an OMNISORP 100CX apparatus.

XRD data were obtained on a Rigaku-D/max-B automated power X-ray diffractometer. Anode Cu K_{α} (45

kV, 40 mA) was used as the X-ray source.

In TPR experiments, 50 mg of catalyst was charged in a quartz microreactor (4 mm i.d). After purged with N_2 at room temperature (RT) for 1 h, the sample was reduced in a 5% H_2/N_2 stream (30 mL/min). The reaction temperature was uniformly raised with ramp of 20 K/min from RT to a holding temperature of 1173 K, which was held for 13 min. The H_2 consumption was monitored by a TC detector connected to a PC data station.

Results and discussion

Activities of Co/Al₂O₃ catalysts

Table 1 reports the results obtained over various Co/Al₂O₃ catalysts after a reaction time of 100 min. It demonstrates that the activity of Co/Al₂O₃ catalysts depends on both Co loading and calcining temperature. The methane reforming activity is in the following order: 9Co923 >> 4Co923 >> 9Co1473 ~ 4Co1473. 9Co923 catalyst shows optimal activity, but presents notable carbon deposition. 4Co923 catalyst is much less active than 9Co923 catalyst. Furthermore, a rapid deactivation is also observed for the catalyst. CH4 conversion over 4Co923 sharply decreases from 68.1% to 3.0% during 100 min of the reaction. The deactivated catalyst displays a pronounced change from black to gray blue in color, indicating that a phase transformation, probably such as Co⁰→CoAl₂O₄ occurred during the reaction. For 4Co1473 and 9Co1473 catalysts, no activity is measured unless a pre-reduction at higher temperature (about 1073 K) is performed. This is attributed to the inactive CoAl₂O₄ species formed during calcining Co/Al₂O₃ at high temperature. 20

Activities of Pt-Co/Al₂O₃ catalyst

Table 2 compiles activities of $Pt-Co/Al_2O_3$ catalysts. Comparing Table 2 with Table 1, it is found that promoted by a small amount of Pt, both 4Co1473 and 9Co1473 catalysts show significant improvement in activity, and display excellent resistance to carbon deposition. On the other hand, the addition of Pt results in negligible improvement in activity for 4Co923 catalyst and a notable increase in carbon formation for 9Co923

catalyst, respectively. These results demonstrate that the addition of Pt to Co/Al₂O₃ catalyst could affect greatly its catalytic performance and the effect is sensitive to catalyst preparation conditions. Among the catalysts list-

ed in Table 1 and Table 2, the Co/Al_2O_3 catalyst calcined at 1473 K and promoted by Pt is the most effective for CO_2 reforming of CH_4 .

Table 1 Catalytic performance of Co/Al ₂ O ₃ catalysts (GHSV = 4100 h ⁻¹ , $T = 973$ K, $t = 100$ H	Table 1	Catalytic performance of	f Co/Al ₂ O ₃ catalysts	$(GHSV = 4100 h^{-1})$	T = 973 K	t = 100 mir
---	---------	--------------------------	---	------------------------	------------	--------------

0.1.	Conversion (%)		$(CO + H_2)$	00 AI	$Formed^a$
Catalyst —	CH ₄	CO ₂	(%)	CO/H ₂	carbon (%)
4Co923	3.0	8.1	5.4	8.41	Trace
4Co1473	~ 0	~ 0	Trace	****	Trace
9Co923	82.2	88.9	86.0	1.13	2.07
9Co1473	~ 0	~ 0	Trace	_	Trace
9Co1473 ^b	76.2	90.4	83.1	1.18	1.815

^a The carbon amount on catalysts was defined as percentage of weight of catalyst.

Table 2 Catalytic performance of Pt-Co/Al₂O₃ catalysts (GHSV = 4100 h⁻¹, T = 973 K, t = 100 min)

C-+-l	Conversion (%)		(CO + H ₂)	CO AI	Formed ^a
Catalyst —	CH ₄	CO ₂	_ (%)	CO/H ₂	carbon (%)
0.2Pt4Co923	6.5	7.6	7.1	5.29	Trace
0.2Pt4Co1473	80.8	88.3	83.1	1.08	0.024
0.2Pt9Co923	82.0	88.5	85.0	1.08	6.012
0.2Pt9Co1473	81.8	89.6	85.6	1.07	0.081

^a The carbon amount on catalysts was defined as percentage of weight of catalyst.

Fig. 1 shows effect of Pt content on activities of Pt-Co1473 and Pt/Al $_2$ O $_3$ catalysts. In a certain range of Pt content, all catalysts present increase in activity with Pt loading, but PtCo1473 catalysts are more active than Pt/Al $_2$ O $_3$ catalyst. The optimum Pt contents are 0.04% and 0.2% for the PtCo1473 catalysts at 9% and 4% Co,

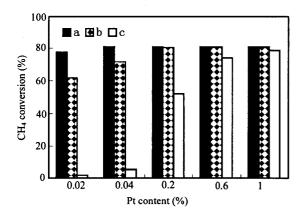


Fig. 1 Effent of Pt content on catalytic activity of different catalysts (a) Pt9Co1473; (b) Pt4Co1473; (c) Pt/Al₂O₃ (Reaction conditions: T = 973 K, GHSV = 4100 h⁻¹, t = 100 min).

respectively. Above the content, an increase in Pt loading does not produce any further significant increase in activity. However, when Pt content is below 0.2%, Pt/Al₂O₃ catalyst exhibits negligible activity, although its CH₄ conversion reaches the value of PtCo1473 catalysts when Pt content increases to 1%.

The catalyst stability was also examined. As shown in Fig. 2, a linear decline in CH₄ conversion is observed

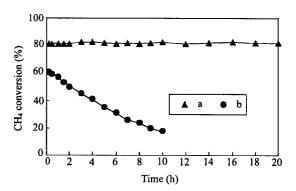


Fig. 2 Stability of catalysts for CO₂ reforming of CH₄. (a) 0.2Pt4Co1473; (b) 0.2% Pt/Al₂O₃ (Reaction conditions: T = 973 K, GHSV = 4100 h⁻¹).

^b The catalyst was reduced at 1073 K for 1 h before reaction.

for the 0.2% Pt/Al₂O₃ catalyst, presumably due to accumulation of carbonaceous species on the catalyst surface. ¹⁸ During 10 h of reaction, the conversion decreases from 59.8% for the initial reaction to 18.7%. By contrast, 0.2Pt4Co1473 catalyst maintains its high activity during 20 h of reaction without significant coke formation, showing optimal stability and excellent resistance to carbon deposition.

XRD study

Fig. 3 gives XRD spectra of Co/Al₂O₃ catalysts calcined at 923 and 1473 K. For Co/Al₂O₃ catalysts calcined at 923 K, three peaks are observed at d = 0.244, 0.286 and 0.467 nm (2θ -value: 36.8, 31.3 and 19.0°, respectively), in which the intensities increase toward higher cobalt loading. Considering that the diffraction lines characteristic of Co₃O₄ and CoAl₂O₄ blend together at d = 0.244 and 0.286 nm, except for a line of Co₃O₄ at 0.467 nm which is absent from XRD pattern of CoAl₂O₄, ²⁰ the presence of Co₃O₄ can be inferred for 4Co923 and 9Co923 catalysts. On 4Co1473 and 9Co1473 catalysts, however, the peak of 0.467 nm disappears and several sharp peaks clearly exhibit the presence of crystalline CoAl₂O₄ and α-Al₂O₃ in both the catalysts, agreeing with the literature results. 21 This is also supported by the results showed in Table 3. When

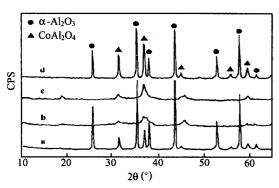


Fig. 3 XRD patterns of Co/Al₂O₃ catalysts. (a) 4Co1473; (b) 4Co923; (c) 9Co923; (d) 9Co1473.

Table 3 Color and surface area of catalysts

A 1	0.1			
Catalyst	Color	BET area (m ² /g)		
4Co923	black	162.9		
4Co1473	sky blue	8.6		
0.2Pt4Co923	black	153.1		
0.2Pt4Co1473	sky blue	9.9		

calcination temperature increases from 923 to 1473 K, the catalysts experienced pronounced changes in color and surface area, indicating such phase transformations as Co_3O_4 to CoAl_2O_4 and $\gamma\text{-Al}_2\text{O}_3$ to $\alpha\text{-Al}_2\text{O}_3$ caused by calcination of $\text{Co}/\text{Al}_2\text{O}_3$ at high temperature.

The effect of platinum addition to Co/Al₂O₃ catalysts on their XRD patterns is shown in Fig. 4. When Pt content is 1%, the crystalline PtO2 is clearly detected for Pt/Al₂O₃ and PtCo923 catalysts. However, no distinct XRD peaks of Pt species are detected for PtCo1473 catalyst at 1% Pt, the XRD pattern of which is the same as 4Co1473 catalyst's shown in Fig. 3, although weak peaks of PtO₂ are observed at 2% Pt. These findings suggest that Pt species well dispersed over Pt-Co/Al₂O₃ catalyst when Co/Al₂O₃ is calcined at 1473 K before platinum addition. During calcining at high temperature, support γ-Al₂O₃ is transformed into α-Al₂O₃ and CoAl₂O₄ spinel is formed. On the other hand, comparing XRD intensities of PtO₂ over Pt/Al₂O₃, the catalyst with α-Al₂O₃ as the support confirmed by profile a in Fig. 4, with that over PtCo923, the catalyst with γ-Al₂O₃ as the support, it is obvious that α-Al₂O₃ can not be considered as a better carrier for dispersing PtO₂. Consequently, the higher dispersion of Pt species over PtCo1473 catalyst than over Pt/Al₂O₃ and PtCo923 catalysts might be related to the presence of CoAl₂O₄. It is presumable that the Pt species disperse preferably over surface phase of CoAl₂O₄ rather than over Al₂O₃ support similarly to that demonstrated by Zsoldos et al. 22 More detailed studies remain to be done.

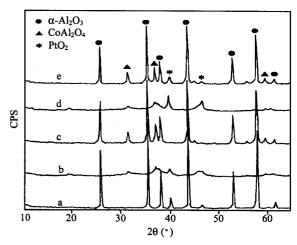


Fig. 4 XRD patterns of Pt-Co/Al₂O₃ catalysts. (a) 1% Pt/Al₂O₃; (b) 1Pt4Co923; (c) 1Pt4Co1473; (d) 2Pt4Co923; (e) 2Pt4Co1473.

TPR results

From Fig. 5, it can be seen that the reduction behaviors of Co/Al₂O₃ catalysts calcined at 1473 K with and without Pt are far different. On Co1473 catalyst a peak due to the reduction of CoAl₂O₄, ²³ appears at above 1173 K, which has not dropped to baseline although the reduction at 1173 K lasts for 13 min. On Pt/Al₂O₃ catalyst three peaks appear at 423, 493 and 713 K, respectively. The former two peaks could be assigned to a twostep reduction of "free" PtO_2 , ²⁴ i.g., $Pt^{4+} \rightarrow Pt^{2+} \rightarrow$ Pt⁰, and the last peak probably indicates the reduction of PtO₂ with stronger interaction with support. These peaks are also observed for PtCo1473 catalysts. However, due to Pt addition, the peak of CoAl₂O₄ reduction shifts to 1103 K, and its intensity is greatly increased also. This clearly demonstrates that Pt promotes reduction of CoAl₂O₄. The Pt-assisted process could be attributed to spillover hydrogen activated on the platinum metal, which facilitates CoAl₂O₄ reduction.

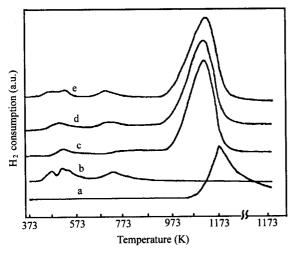


Fig. 5 TPR profiles of PtCo1473 catalysts (a) 4Co1473; (b) 1%Pt/Al₂O₃; (c)0.2Pt4Co1473; (d) 0.6Pt4Co1473; (e) 1Pt4Co1473.

Fig. 6 shows TPR profiles of 4Co1473 and 0.2Pt4Co1473 catalysts that have been reduced at 923 K in H_2 for 1 h and cooled in N_2 flow after the reduction. No effect of the pre-reduction on TPR profile is observed for 4Co1473 catalyst. The profile of reduced catalyst is the same as that of the fresh one, indicating that $CoAl_2O_4$ in the catalyst can not be reduced under the pretreatment conditions. On the other hand, by compar-

ing profile b with profile c in Fig. 6, it is found that in addition to disappearance of the peaks due to platinum reduction, a decrease in the area of the peak due to CoAl2O4 reduction is also caused by the reduction prior to TPR. The hydrogen consumptions for CoAl2O4 reduction during the TPR process are 0.797 and 0.524 mmol H₂/gcata. for fresh and reduced 0.2Pt4Co1473 catalyst, respectively. The values indicate that about 34% of the Co, being present as CoAl₂O₄ in the catalyst, is reduced to Co⁰ by reduction at 923 K for 1 h, the pretreatment employed for the reaction of CO2-CH4 reforming. Relating results of TPR and activity measurements listed in Table 1 and Table 2, it is considered that the zerovalent platinum and the zerovalent cobalt resulting from CoAl₂O₄ reduction promoted by Pt are responsible for the high activity of PtCo1473 catalysts for CO2 reforming of CH4 to synthesis gas. On the other hand, the remained CoAl₂O₄ in the catalyst probably plays a role in the suppression of coking during the reaction. This is supported by the results obtained over Ni/Al₂O₃²⁵ and Co/Al₂O₃²¹ catalysts, in which NiAl₂O₄ and CoAl₂O₄ were found to be beneficial to improve anti-carbon deposition property of the catalysts.

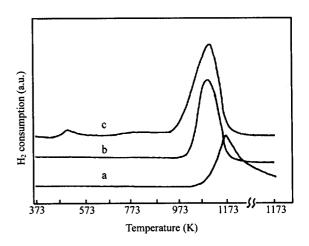


Fig. 6 TPR profiles of 4Co1473 and 0.2Pt4Co1473 catalysts before and after reduction at 923 K for 1 h. (a) 4Co1473 before or after reduction; (b) 0.2Pt4Co1473 after reduction; (c) 0.2Pt4Co1473 before reduction.

As shown in Fig. 7, the Pt-assisted reduction of Co species is also observed for PtCo923 catalysts. On 4Co923 and 9Co923 catalysts, two peaks appear at 863 and 1173 K, which are ascribed to the reduction of Co₃O₄ and CoAl₂O₄, respectively. The intensities of the

peaks increase toward high Co content, but the increasing is more notable for the peak at 863 K. This is related to the higher activity of 9Co923 catalyst than 4Co923 catalyst. With addition of small amount of Pt, both the catalysts present shifting of the peaks to lower temperature and increase in peak intensities, similarly to the case of 4Co1473 catalyst. However, in the case of catalytic performance, the effect of Pt addition is far different for Co/Al₂O₃ catalysts calcined at different temperatures (see Table 2). It is well known that carbon deposition during CO2-CH4 reforming originate from CH4 decomposition and/or CO disproportion reaction. Numerous studies suggest that CO dissociation on transition metal surface is initiated via adsorption at a multiply coordinated site, 26-28 and the higher coordination sites are favorable to CH4 cracking, 29 also. Accordingly, it is considered that the higher coordination of active sites over the catalyst surface due to higher metal loading and higher reducibility is more susceptible to coking. The results of XRD (Fig. 3) and TPR (Fig. 7) show that the Co species over 9Co923 catalyst is present mainly as reducible Co₃O₄. Promoted by Pt, CoAl₂O₄ would also be reduced partially under the reaction conditions. This would result in an assembly of "crowed" active sites over the catalyst and thus lead to increase in carbon formation. At lower Co content as the case of $4\,\%\,\text{Co/Al}_2\text{O}_3$ catalyst, both poor activity and negligible carbon deposition are observed. The activity can be greatly improved by adding Pt to the catalyst calcined at high temperature. To the great difference in activity between 0.2Pt4Co923 and 0.2Pt4Co1473 catalysts (see Table 2), the clue probably lies in the different dispersion of PtO2, the precursor of Pt0, over the two catalysts suggested by the XRD results shown in Fig. 4. It is a reasonable assumption that a higher dispersion of PtO2 is likely to result in a higher dispersion of Pt0, which is responsible for higher activity. In addition, another situation demonstrated in literature for Pt-Co/Al₂O₃ catalyst³⁰ has to be taken into consideration. After pre-reduction on 0.2Pt4Co923 catalyst with composition of $n_{Co} > n_{Pt}$ (where n_{Co} and n_{Pt} are the moles of metallic cobalt and platinum, respectively), part of Pt0 sites are possible to be covered by metallic cobalt, and then the catalyst would behave as cobalt-like catalyst. This assumption is supported by the fact that 0.2Pt4Co923 is still less active than 0.2% Pt/Al2O3 catalyst and shows almost the same performance as 4Co923 catalyst. In the case of 0.2Pt4Co1473 catalyst with partially reducible CoAl₂O₄ as the only cobalt species, the covering extent of metallic cobalt over Pt⁰ sites can be considered lower or negligible because of a lower $n_{\rm Co}/n_{\rm Pt}$ ratio and a higher Pt⁰ dispersion than 0.2Pt4Co923 catalyst's.

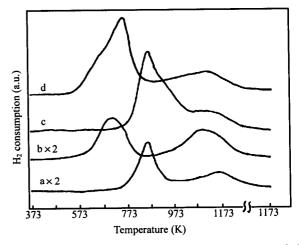


Fig. 7 TPR profiles of PtCo923 catalysts (a) 4Co923; (b) 0.2Pt4Co923; (c) 9Co923; (d) 0.2Pt9Co923.

Conclusions

The CO₂ reforming of methane has been investigated on Pt-Co/Al₂O₃ catalysts by comparison with Co/Al₂O₃ and Pt/Al₂O₃ catalysts. The catalytic performance of Pt-Co/Al₂O₃ is sensitive to calcination temperature. Among the catalysts investigated, Co/Al₂O₃ calcined at 1473 K and promoted by a small amount of Pt is the most effective to CO₂ reforming of methane, in terms of high activity, optimal stability and excellent resistance to carbon deposition. At lower metal content, the activity order for the catalysts is Pt-Co/Al₂O₃ > Pt/Al₂O₃ \gg Co/Al₂O₃. When Co loading is 9%, Co/Al₂O₃ calcined at 923 K is also active for CO₂ reforming of CH₄, but its carbon formation is much more fast than Pt-Co/Al₂O₃ catalyst's.

The Pt species is found to be well-dispersed over the bimetal catalyst, when Co/Al₂O₃ is calcined at 1473 K prior to adding Pt to it, the calcining resulting in the formation of CoAl₂O₄. Due to Pt addition, CoAl₂O₄ in the catalyst presents a notable improvement in reducibility, which can be reduced partially under the reaction conditions. It is deduced that the zerovalent platinum, being present over the catalyst surface with high dispersion, and the zerovalent cobalt resulting from CoAl₂O₄ reduction are responsible for high activity of the Pt-Co/

Al₂O₃, and the remain CoAl₂O₄ is beneficial to suppression of carbon deposition over the catalyst.

References

- 1 Gadalla, A. M.; Bower, B. Chem. Eng. Sci. 1988, 43, 3049
- 2 Muir, J. F.; Hogan, R. E.; Skocypec, R. D.; Buck, R. Solar Energy 1994, 52, 467.
- 3 Skocypec, R. D.; Hogan, R. E.; Muir, J. F. Solar Energy 1994, 52, 479.
- 4 Richardson, J. T.; Paripatyadar, J. A. Appl. Catal. 1990, 61, 293.
- 5 Ashcroft, A. T.; Cheetman, A. K.; Green, M. C. H.; Vernon, P. D. F. Nature 1991, 352, 225.
- 6 Sodesawa, T.; Dobashi, A.; Nozaki, F. React. Kinet. Catal. Lett. 1979, 12, 107.
- 7 Chubb, T. A. Sol. Energy 1980, 24, 341.
- Rostrup Nielsen, J. R. Stud. Surf. Sci. Catal. 1988, 36, 73.
- 9 Gadalla, A. M.; Sommer, M. E. Chem. Eng. Sci. 1989, 44, 2825.
- Yamazaki, O.; Nozaki, T.; Omata, K.; Fujimoto, K. Chem. Lett. 1992, 1953.
- 11 Solymosi, F.; Kutsan, G.; Erdöhelyi, A., Catal. Lett. 1991, 11, 149.
- 12 Erdöhelyi, A.; Cserenyi, J.; Solymosi, F. J. Catal. 1993, 141, 287.
- 13 Rostrup Nielsen, J. R.; Back Hansen, J. H. J. Catal. 1993, 144, 38.

- 14 Erdöhelyi, A.; Cserenyi, J.; Solymosi, F. Appl. Catal. A 1994, 108, 205.
- 15 Nakamura, J.; Akkawa, K.; Sato, K.; Uchijima, T. J. Japan Petrol, Inst. 1993, 97, 36.
- 16 Nakamura, J.; Akkawa, K.; Sato, K.; Uchijima, T. Catal. Lett. 1994, 25, 265.
- 17 Tsipouriari, V. A.; Efstathiou, A. M.; Zhang, Z. L.; Verykios, X. E. Catal. Today 1994, 21, 579.
- Bitter, J. H.; Hally, W.; Seshan, K.; van Ommen, J. G.; Lercher, J. A. Catal. Today 1996, 29, 349.
- 19 Fu, L. Y.; Xie, W. G.; Lu, S. J.; Qiu, F. L. Sci. in China 2000, 30, 85.
- Lu, Y.; Deng, C.; Ding, X. J.; Shen, S. K. J. Catal.
 1995, 16, 447 (in Chinese).
- 21 Wang, P. F.; Wu, N. C.; Zheng, X. M. J. Catal. 1998, 19, 196 (in Chinese).
- 22 Zsoldos, Z.; Hoffer, T.; Guczi, L. J. Phys. Chem. 1991, 95, 798.
- 23 Arnoldy, P.; Moulijn, J. A. J. Catal. 1985, 93, 38.
- 24 Mile, B.; Stirling, D.; Zammitt, M. A.; Lovell, A.; Webb, M. J. Catal. 1988, 114, 217.
- 25 Chen, Y. G.; Ren, J. Catal. Lett. 1994, 29, 39.
- 26 Blyholder, G.; Lawless, M. Surf. Sci. 1993, 290, 155.
- 27 Zaera, F.; Kollin, E.; Gland, J. L. Chem. Phys. Lett. 1985, 121, 464.
- 28 Johnson, S.; Madix, R. J. Surf. Sci. 1981, 108, 77.
- 29 Bradford, M. C. J.; Vannice, M. A. Catal. Rev.-Sci. Eng. 1999, 41, 1.
- Guezi, L.; Hoffer, T.; Zsoldos, Z. J. Phys. Chem. 1991, 95, 802.

(E200008164 SONG, J.P.; LING, J.)